Estrogen and tamoxifen metabolites protect smooth muscle cell membrane phospholipids against peroxidation and inhibit cell growth.

نویسندگان

  • R K Dubey
  • Y Y Tyurina
  • V A Tyurin
  • D G Gillespie
  • R A Branch
  • E K Jackson
  • V E Kagan
چکیده

The goal of this study was to test the hypothesis that antioxidant estrogens, by a mechanism independent of the estrogen receptor, protect phospholipids residing in the plasma membrane of vascular smooth muscle cells from peroxidation and peroxidation-induced cell growth and migration. Peroxidation of membrane phospholipids was assessed by HPLC analysis of phospholipids extracted from rat aortic vascular smooth muscle cells prelabeled with cis-parinaric acid (a fatty acid that is susceptible to peroxidation, which quenches its fluorescent properties). Incubation of cells for 2 hours with the peroxyl radical donor 2,2'-azobis-2,4-dimethylvaleronitrile (AMVN) caused peroxidation of all measured membrane phospholipids. This effect was attenuated by pretreating cells for 15 minutes with 50 to 5000 ng/mL of 2-hydroxyestradiol (strong antioxidant but weak estrogen-receptor ligand) or 4-hydroxytamoxifen (strong antioxidant and potent estrogen-receptor ligand), but not by estrone or droloxifene (both weak antioxidants but potent estrogen-receptor ligands). Moreover, pretreatment of cells for 20 hours with physiological concentrations (0.3 ng/mL) of 2-hydroxyestradiol or pharmacologically relevant concentrations of 4-hydroxytamoxifen (40 ng/mL) also decreased AMVN-induced phospholipid peroxidation. Both 2-hydroxyestradiol and 4-hydroxytamoxifen were as effective as 2,2,5, 7,8-pentamethyl-6-hydrochromane (an antioxidant homolog of vitamin E) in attenuating AMVN-induced peroxidation of membrane phospholipids. Also, physiological concentrations of 2-hydroxyestradiol, but not estrone, and pharmacologically relevant concentrations of 4-hydroxytamoxifen attenuated AMVM-induced DNA synthesis, cell proliferation, and cell migration. These studies demonstrate in vascular smooth muscle cells that antioxidant estrogens via a non-estrogen receptor-dependent mechanism attenuate peroxidation of membrane phospholipids and peroxidation-induced cell growth and migration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phospholipids Against Peroxidation and Inhibit Cell Growth Estrogen and Tamoxifen Metabolites Protect Smooth Muscle Cell Membrane

The goal of this study was to test the hypothesis that antioxidant estrogens, by a mechanism independent of the estrogen receptor, protect phospholipids residing in the plasma membrane of vascular smooth muscle cells from peroxidation and peroxidation-induced cell growth and migration. Peroxidation of membrane phospholipids was assessed by HPLC analysis of phospholipids extracted from rat aorti...

متن کامل

SPHINGOMYELIN METABOLITES A S SECOND MESSENGERS IN AIRWAY SMOOTH MUSCL E CELL P ROLIFERATION

Sphingolipid metabolism was examined in guinea-pig airway smooth muscle cells stimulated by platelet-derived growth factor (PDGF) and 4β-phorbol 12- myristate 13-acetate (PMA), as mitogens and bradykinin (BK) as non-mitogen. Stimulation of the cells by PMA and PDGF for 60 min. at 37°C induced the following changes in sphingolipid metabolites: in cells prelabeled with PH] palmitate, a 1.2 f...

متن کامل

Pharmacological relevance of endoxifen in a laboratory simulation of breast cancer in postmenopausal patients.

BACKGROUND Tamoxifen is metabolically activated via a CYP2D6 enzyme system to the more potent hydroxylated derivatives 4-hydroxytamoxifen and endoxifen. This study addresses the pharmacological importance of endoxifen by simulating clinical scenarios in vitro. METHODS Clinical levels of tamoxifen metabolites in postmenopausal breast cancer patients previously genotyped for CYP2D6 were used in...

متن کامل

Ethylbromide tamoxifen, a membrane-impermeant antiestrogen, activates smooth muscle calcium-activated large-conductance potassium channels from the extracellular side.

Smooth-muscle calcium-activated large-conductance potassium channels (BK channels) are activated by tamoxifen and 17-beta-estradiol. This increase in NP(o), the number of channels, N, multiplied by open probability, depends on the presence of the regulatory beta1-subunit. Furthermore, a previous study indicated that 17-beta-estradiol might bind an extracellular site on the beta1-subunit. Becaus...

متن کامل

Estradiol metabolites inhibit endothelin synthesis by an estrogen receptor-independent mechanism.

Estradiol inhibits endothelin-1 synthesis, an effect that may contribute to the cardiovascular protective effects of estradiol. Recent findings that estradiol inhibits neointima formation in mice lacking estrogen receptors suggests that the cardiovascular protective effects of estradiol may be mediated by means of an estrogen receptor-independent mechanism. Because 2-hydroxyestradiol and 2-meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 84 2  شماره 

صفحات  -

تاریخ انتشار 1999